Magnetic properties and thermal stability of B2 and bcc phases in AlCoCrFeMnxNi
Alloys of AlCoCrFeMnxNi (x = 0.0, 0.04, 0.08, 0.12 and 0.16) have been synthesized through arc–melting and gas atomisation (x = 0.0 and 0.16) to investigate the effect of Mn additions to AlCoCrFeNi. Here, the structure, magnetic properties and the thermal stability of the alloys is presented. Electr...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alloys of AlCoCrFeMnxNi (x = 0.0, 0.04, 0.08, 0.12 and 0.16) have been synthesized through arc–melting and gas atomisation (x = 0.0 and 0.16) to investigate the effect of Mn additions to AlCoCrFeNi. Here, the structure, magnetic properties and the thermal stability of the alloys is presented. Electron microscopy confirmed the elemental composition and revealed the microstructure to consist of two spinodally decomposed phases. Rietveld analysis of standard powder X-ray diffraction showed the arc-melted samples consisted of two phases, a B2 phase and a bcc phase while the gas atomised powders consisted of a single-phased B2 structure. Magnetic measurements revealed an increase in the saturation magnetisation at room temperature by 68% for AlCoCrFeMnNi compared to AlCoCrFeNi. The thermal stability of the alloys was investigated using magnetometry, differential scanning calorimetry and in–situ X-ray diffraction, which showed that an increase in Mn content adversely effected the thermal stability of the alloy. |
---|---|
DOI: | 10.1016/j.jallcom.2020.158450 |