Improved Self-Consumption of Photovoltaic Electricity in Buildings : Storage, Curtailment and Grid Simulations

The global market for photovoltaics (PV) has increased rapidly: during 2014, 44 times more was installed than in 2004, partly due to a price reduction of 60-70% during the same time period. Economic support schemes that were needed to make PV competitive on the electricity market have gradually decr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Luthander, Rasmus
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The global market for photovoltaics (PV) has increased rapidly: during 2014, 44 times more was installed than in 2004, partly due to a price reduction of 60-70% during the same time period. Economic support schemes that were needed to make PV competitive on the electricity market have gradually decreased and self-consumption of PV electricity is becoming more interesting internationally from an economic perspective. This licentiate thesis investigates self-consumption of residential PV electricity and how more PV power can be allowed in and injected into a distribution grid. A model was developed for PV panels in various orientations and showed a better relative load matching with east-west-oriented compared to south-oriented PV panels. However, the yearly electricity production for the east-west-system decreased, which resulted in less self-consumed electricity. Alternatives for self-consumption of PV electricity and reduced feed-in power in a community of detached houses were investigated. The self-consumption increased more with shared batteries than with individual batteries with identical total storage capacity. A 50% reduction in feed-in power leads to losses below 10% due to PV power curtailment. Methodologies for overvoltage prevention in a distribution grid with a high share of PV power production were developed. Simulations with a case with 42% of the yearly electricity demand from PV showed promising results for preventing overvoltage using centralized battery storage and PV power curtailment. These results show potential for increasing the self-consumption of residential PV electricity with storage and to reduce stress on a distribution grid with storage and power curtailment. Increased self-consumption with storage is however not profitable in Sweden today, and 42% of the electricity from PV is far more than the actual contribution of 0.06% to the total electricity production in Sweden in 2014.