Anomaly detection on social media using ARIMA models

This thesis explores whether it is possible to capture communication patterns from web-forums and detect anomalous user behaviour. Data from individuals on web-forums can be downloaded using web-crawlers, and tools as LIWC can make the data meaningful. If user data can be distinguished from white no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Isbister, Tim
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This thesis explores whether it is possible to capture communication patterns from web-forums and detect anomalous user behaviour. Data from individuals on web-forums can be downloaded using web-crawlers, and tools as LIWC can make the data meaningful. If user data can be distinguished from white noise, statistical models such as ARIMA can be parametrized to identify the underlying structure and forecast data. It turned out that if enough data is captured, ARIMA models could suggest underlying patterns, therefore anomalous data can be identified. The anomalous data might suggest a change in the users' behaviour.