Machine learning system for generating classification data and part localization data for objects depicted in images
Techniques are disclosed for identifying discriminative, fine-grained features of an object in an image. In one example, an input device receives an image. A machine learning system includes a model comprising a first set, a second set, and a third set of filters. The machine learning system applies...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques are disclosed for identifying discriminative, fine-grained features of an object in an image. In one example, an input device receives an image. A machine learning system includes a model comprising a first set, a second set, and a third set of filters. The machine learning system applies the first set of filters to the received image to generate an intermediate representation of the received image. The machine learning system applies the second set of filters to the intermediate representation to generate part localization data identifying sub-parts of an object and one or more regions of the image in which the sub-parts are located. The machine learning system applies the third set of filters to the intermediate representation to generate classification data identifying a subordinate category to which the object belongs. The system uses the part localization and classification data to perform fine-grained classification of the object. |
---|