Methods for rinsing microelectronic substrates utilizing cool rinse fluid within a gas enviroment including a drying enhancement substance

Rinsing and drying a surface of a microelectronic device and the enhanced removal of rinse fluid from the surface of the microelectronic device while the microelectronic device is rotated is provided as part of a spray processing operation. Rinse fluid is generally directed to the surface of the mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gast, Tracy A
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rinsing and drying a surface of a microelectronic device and the enhanced removal of rinse fluid from the surface of the microelectronic device while the microelectronic device is rotated is provided as part of a spray processing operation. Rinse fluid is generally directed to the surface of the microelectronic device by a dispensing device while one or more such microelectronic devices are supported on a turntable in a generally horizontal fashion. Drying gas is supplied after the rinsing step. During at least a portion of both rinsing and drying steps, a drying enhancement substance, such as IPA, is delivered to enhance the rinsing and drying. Particle counts and evaporation thicknesses are reduced by delivering a tensioactive compound like IPA, during at least portions of the rinsing and drying steps while a microelectronic device is controllably rotated. The tensioactive compound is preferably delivered into the processing chamber during rinsing and drying and rinse fluid, preferably DI water, is preferably dispensed to the microelectronic device surface at a temperature below the dew point of the tensioactive compound. Moreover, the rotational speeds of the microelectronic device during drying and the tensioactive compound delivery concentration, timing and duration are preferably optimized to achieve further reduced particle counts and evaporation thicknesses.