Method and apparatus for thermal, mechanical, and electrical optimization of a solid-oxide fuel cell stack
A solid-oxide fuel cell stack assembly comprising a plurality of sub-stacks, preferably two sub-stacks each containing one-half the total number of fuel cells. Cathode air and fuel gas are passed through the first sub-stack, wherein they are partially reacted and also heated. The exhaust cathode air...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A solid-oxide fuel cell stack assembly comprising a plurality of sub-stacks, preferably two sub-stacks each containing one-half the total number of fuel cells. Cathode air and fuel gas are passed through the first sub-stack, wherein they are partially reacted and also heated. The exhaust cathode air and the exhaust fuel gas from the first sub-stack are directed to the respective inlets of the second sub-stack, becoming the supply cathode air and fuel gas therefor. A first heat exchanger in the flow paths between the sub-stacks and a second heat exchanger ahead of the sub-stacks can help to balance the performance of the two stacks. The result of dividing the number of cells into a plurality of sub-stacks, wherein the exhaust of one sub-stack becomes the supply for the next sub-stack, is that fuel efficiency and utilization are improved, thermal stresses are reduced, and electrical power generation is increased. |
---|