Method for characterizing a highly parallelized liquid handling technique using microplates and test kit for carrying out the method
A method for characterizing highly parallelized liquid handling technology using microplates and test kit for carrying out the method. Possibilities for characterizing a multi-channel or many-channel handling technology are known in principle. However, especially with regard to more highly paralleli...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for characterizing highly parallelized liquid handling technology using microplates and test kit for carrying out the method. Possibilities for characterizing a multi-channel or many-channel handling technology are known in principle. However, especially with regard to more highly parallelized devices and very small volumes, particularly under conditions corresponding to the actual application conditions, these possibilities were relatively expensive and presented problems especially with respect to the accuracy of evaluation and with respect to correctness and precision. The present method enables a more economical and very exact characterization for applications of this kind. According to the invention, a) a mean sample volume or mean reagent volume is determined by gravimetry from the totality of sample liquid or reagent liquid of all individual channels of the liquid handling technology; b) a normalized mean optical intensity is formed from optical measurement signals of all sample volumes or reagent volumes, each of which is mixed with a diluent; c) the volume accuracy of every individual channel of the liquid handling technology with respect to the mean sample volume or mean reagent volume is determined from the intensity deviation of the normalized optical measurement signal of the individual channel in relation to the normalized mean optical intensity. Further, a test kit is provided for advantageous implementation of the method. The invention is used wherever highly parallelized liquid handling technology is to be characterized with respect to accuracy and precision, particularly when the handled volumes lie within the μl range or sub-μl range and characterization is to be carried out under conditions approximating the real operating conditions. |
---|