Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock
A chip scale atomic clock is disclosed that provides a low power atomic time/frequency reference that employs direct RF-interrogation on an end-state transition. The atomic time/frequency reference includes an alkali vapor cell containing alkali atoms, preferably cesium atoms, flex circuits for phys...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A chip scale atomic clock is disclosed that provides a low power atomic time/frequency reference that employs direct RF-interrogation on an end-state transition. The atomic time/frequency reference includes an alkali vapor cell containing alkali atoms, preferably cesium atoms, flex circuits for physically supporting, heating, and thermally isolating the alkali vapor cell, a laser source for pumping alkali atoms within the alkali vapor cell into an end resonance state by applying an optical signal along a first axis, a photodetector for detecting a second optical signal emanating from the alkali vapor cell along the first axis, a pair of RF excitation coils for applying an RF-interrogation signal to the alkali atoms along a second axis perpendicular to the first axis, a pair of bias coils for applying a uniform DC magnetic field along the first axis, and a pair of Zeeman coils for applying a Zeeman interrogation signal to the alkali atoms and oriented and configured to apply a time-varying magnetic field along the second axis through the alkali vapor cell. Another flex circuit is used for physically supporting the laser source, for heating the laser source, and for providing thermal isolation of the laser source. The laser source can be a vertical cavity surface emitting laser (VSCEL). The bias coils can be Helmholtz coils. |
---|