Verification architecture of infrared thermal imaging array module

The present invention relates to a verification architecture of an infrared thermal imaging array module, which includes the following steps. Perform specification design of thermal imaging module, epitaxy, and verification of optical characteristics for calibrating epitaxial parameters. Perform a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tang, Shiang-Feng, Chiang, Chen-Der, Weng, Ping-Kuo, Shih, Chih-Chang, Gau, Yau-Tang, Luo, Jiunn-Jye, Yang, San-Te
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention relates to a verification architecture of an infrared thermal imaging array module, which includes the following steps. Perform specification design of thermal imaging module, epitaxy, and verification of optical characteristics for calibrating epitaxial parameters. Perform a fabrication process of single-device-type sensing device and verification of changing-temperature optoelectronic measurement by measuring and calibrating at low temperatures by changing temperatures and voltages. Perform a fabrication process of focal-plane array and verification of optoelectronic uniformity and test for dark-current uniformity. Perform a fabrication process and verification of jointing and thinning the focal-plane array and the ROIC. The focal-plane sensing module and the ROIC are jointed by indium bonding, and optoelectronic signal conversion is performed using the sensing array module. Perform the verification of integrated test on thermal image quality. Optimum driving and controlling output parameters are tuned for performing analysis and test on thermal image quality of the module. Manufacture the prototype of the thermal imaging array module, which is jointed with the focal-plane sensing array by indium bonding. Thereby, the prototype of the thermal imaging array module is completed.