Address error detection by merging a polynomial-based CRC code of address bits with two nibbles of data or data ECC bits
A memory system provides data error detection and correction and address error detection. A Single-byte Error-Correcting/Double-byte Error-Detecting (SbEC/DbED) code with the byte being a 4-bit nibble is used to detect up to 8-bit errors and correct data errors of 4 bits or less. Rather than generat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A memory system provides data error detection and correction and address error detection. A Single-byte Error-Correcting/Double-byte Error-Detecting (SbEC/DbED) code with the byte being a 4-bit nibble is used to detect up to 8-bit errors and correct data errors of 4 bits or less. Rather than generating address parity, which is poor at detecting even numbers of errors, a cyclical-redundancy-check (CRC) code generates address check bits. A 32-bit address is compressed to just 4 address check bits using the CRC code. The 4 address check bits are merged (XOR'ed) with two 4-bit nibbles of the data SbEC/DbED code to generate a merged ECC codeword that is stored in memory. An address error causes a 2-nibble mis-match due to the redundant merging of the 4 address check bits with 2 nibbles of data correction code. The CRC code is ideal for detecting even numbers of errors common with multiplexed-address DRAMs. |
---|