System and method for nonlinear dynamic control based on soft computing with discrete constraints
A control system using a genetic analyzer based on discrete constraints is described. In one embodiment, a genetic algorithm with step-coded chromosomes is used to develop a teaching signal that provides good control qualities for a controller with discrete constraints, such as, for example, a step-...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A control system using a genetic analyzer based on discrete constraints is described. In one embodiment, a genetic algorithm with step-coded chromosomes is used to develop a teaching signal that provides good control qualities for a controller with discrete constraints, such as, for example, a step-constrained controller. In one embodiment, the control system uses a fitness (performance) function that is based on the physical laws of minimum entropy. In one embodiment, the genetic analyzer is used in an off-line mode to develop a teaching signal for a fuzzy logic classifier system that develops a knowledge base. The teaching signal can be approximated online by a fuzzy controller that operates using knowledge from the knowledge base. The control system can be used to control complex plants described by nonlinear, unstable, dissipative models. In one embodiment, the step-constrained control system is configured to control stepping motors. |
---|