Method of controlled chemical vapor deposition of a metal oxide ceramic layer
This invention relates to a method of controlled chemical vapor deposition (CVD) of a metal oxide ceramic layer, and more particularly, to additives for stabilization and efficiency enhancement of CVD processes for forming bismuth oxide ceramics, such as in the form of thin layers or films on semico...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This invention relates to a method of controlled chemical vapor deposition (CVD) of a metal oxide ceramic layer, and more particularly, to additives for stabilization and efficiency enhancement of CVD processes for forming bismuth oxide ceramics, such as in the form of thin layers or films on semiconductor substrates for use in fabricating microelectronic semiconductor devices, for example, ferroelectric capacitors, and the like.
A method of forming a metal oxide ceramic layer is provided, in which a gaseous flow of a vaporized solution of a precursor organo metal compound in a volatile organic solvent, e.g., plus an oxidizing gas, in the presence of a protonating additive substance and/or activating agent in gaseous state, is conducted into contact with a surface of a substrate. The operation is effected under vacuum pressure at a thermal decomposition temperature for converting the precursor compound to its corresponding metal oxide, e.g., having the same oxidation state as in the precursor compound. The additive substance is present in an amount sufficient for facilitating thermal decomposition of the precursor compound and for controlling the in situ oxidation state of the deposited metal and the amount of oxygen in the formed layer, e.g., while suppressing formation of volatile intermediates and of vacancies in the formed layer. The activating agent is present in an amount sufficient for producing in situ hydrogen-active compounds for enhancing conversion of the precursor compound to its said metal oxide as well as for controlling the in situ oxidation state of the deposited metal and the amount of oxygen in the formed layer, e.g., while suppressing formation of volatile intermediates and of vacancies in the formed layer. |
---|