Information technology system for the definition, optimization and control of processes

The invention relates to the field of computer applications to simulate and/or control real processes, in particular processes which comprise sequences of discrete events, known as discrete event dynamic systems (DEDS). Such processes occur for example in technical developments as well as in other b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lienhard, Heinz, Buetler, Bruno, Poli, Marco, Weiss, Reto, Kuenzi, Urs-Martin, Pentus, Mati
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to the field of computer applications to simulate and/or control real processes, in particular processes which comprise sequences of discrete events, known as discrete event dynamic systems (DEDS). Such processes occur for example in technical developments as well as in other business activities in the industrial or tertiary sector. Also, the behaviour of distributed applications on the intranet/internet sector, in particular of systems and associated software for electronic commerce, is based on such discrete processes. By means of the invention it can be defined and optimized in a novel way. The resulting process models can be directly applied in a novel way to monitoring and system control. The invention relates to a computer application in the field of control, monitoring, modification and/or optimization of processes which comprise real process sequences of discrete events, so-called "discrete event dynamic systems", which cannot usually be described by systems of (differential) equations. Such processes occur for example in technical developments as well as in other business activities in the industrial or tertiary sector. Such a real process is reflected in a process model which is connected to the real process via at least one interface. If the interface(s) is/are bi-directional, real process data can be transmitted into the model directly, i.e. without data conversion, and thus the real process can be monitored; in the model, simulations can be carried out with changed process data; and finally if the result of the simulation is successful, process modifications can be transferred directly to the real process.