Chemical amplification for the synthesis of patterned arrays
Embodiments of the present invention relate to spatially defined chemical synthesis involving lithographic processes. In particular, embodiments of the present invention are directed to novel methods and compositions for synthesizing arrays of diverse polymer sequences, such as polypeptides and poly...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Embodiments of the present invention relate to spatially defined chemical synthesis involving lithographic processes. In particular, embodiments of the present invention are directed to novel methods and compositions for synthesizing arrays of diverse polymer sequences, such as polypeptides and polynucleotides. According to a specific aspect of the invention, a method of synthesizing diverse polymer sequences, such as peptides or polynucleotides, is provided. The diverse polymer sequences are useful, for example, in nucleic acid analysis, gene expression monitoring, receptor and nucleic acid binding studies, surface based DNA computation, and integrated electronic circuits and other miniature device fabrication.
Radiation-activated catalysts (RACs), autocatalytic reactions, and protective groups are employed to achieve a highly sensitive, high resolution, radiation directed combinatorial synthesis of pattern arrays of diverse polymers. When irradiated, RACs produce catalysts that can react with enhancers, such as those involved in autocatalytic reactions. The autocatalytic reactions produce at least one product that removes protecting groups from synthesis intermediates. This invention has a wide variety of applications and is particularly useful for the solid phase combinatorial synthesis of polymers. |
---|