Electronic impedance transformer for inductively-coupled load stabilization
The present invention relates to an implantable electrical device, e.g., an implantable medical device such as an implantable cochlear stimulation system, which receives its operating power and/or which receives recharging power from an external (non-implanted) power source. A fixed frequency extern...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present invention relates to an implantable electrical device, e.g., an implantable medical device such as an implantable cochlear stimulation system, which receives its operating power and/or which receives recharging power from an external (non-implanted) power source.
A fixed frequency external power source having an external coil is inductively coupled with an implanted coil of an implanted medical device. The implant device has an electronic impedance transformer as part of its load circuit. Such electronic impedance transformer sets a proper voltage and current ratio (impedance) so that the coil set, i.e., the external coil and the implanted coil, are loaded with an optimal load. Such optimal loading, in turn, significantly minimizes any mismatch loss from the inductive link between the external coil and the implant coil, and allows wide ranges in the voltage and load resistance and coil separation, while at the same time maintaining an optimal load condition. The impedance transformer is especially applicable to fully implantable cochlear stimulation systems wherein, during one mode of operation, a relatively large power level must be transferred for charging the implanted power storage element, e.g., a rechargeable battery, but wherein another mode of operation, the implant is operated and powered from an external unit and a relatively small power level is transferred to the implant device. The ratio of these power levels may be large, e.g., about 30 to 1, and unless the coil set, i.e., the external coil and implanted coil, are altered between these different load conditions, a huge mismatch loss may occur, which mismatch greatly reduces the power transfer efficiency. The impedance transformer of the invention minimizes such a mismatch loss. |
---|