Magnetic resonance method

The invention relates to a magnetic resonance method for forming a fast dynamic image with an automatically generated grid of essentially orthogonally arranged grid lines by a saturation information induced over the object to be imaged, according to the preamble of claim . A magnetic resonance metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salome, Ryf, Spiegel, Marcus Alexander, Weber, Oliver Michael, Boesiger, Peter
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to a magnetic resonance method for forming a fast dynamic image with an automatically generated grid of essentially orthogonally arranged grid lines by a saturation information induced over the object to be imaged, according to the preamble of claim . A magnetic resonance method is described for forming a fast dynamic image with an automatically generated grid of essentially orthogonally arranged grid lines by a saturation information induced over the object to be imaged. Therefore a first set of parallel saturation planes is obtained by applying a first nonselective RF pulse with a flip angle of 90°, an intermediate magnetic field gradient pulse in direction of the spatial modulation, and a second nonselective RF pulse with a flip angle of 90°. A subsequent spoiler gradient pulse is applied in the direction of the magnetic field gradient for slice selection. Subsequently a second set of parallel saturation planes is obtained in the same manner by inverting one second RF pulse with respect to the first RF pulse. Further the first and the sets of saturation planes are subtracted from each other to obtain a grid free of any contribution of relaxation components of magnetization. A tagging grid in three dimensions is provided by obtaining sets of parallel saturation planes in all three spatial directions, whereas the strengths of the spoiler gradient pulses in the three dimensions are different to each other.