Direct recycle fractionation method using a swing column
This invention relates to the polymerization of monomers in a liquid diluent. Addition polymerizations are frequently carried out in a liquid which is a solvent for the resulting polymer. When high density (linear) ethylene polymers first became commercially available in the 1950's this was the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This invention relates to the polymerization of monomers in a liquid diluent. Addition polymerizations are frequently carried out in a liquid which is a solvent for the resulting polymer. When high density (linear) ethylene polymers first became commercially available in the 1950's this was the method used. It was soon discovered that a more efficient way to produce such polymers was to carry out the polymerization under slurry conditions. More specifically, the polymerization technique of choice became continuous slurry polymerization in a pipe loop reactor. Subsequent to the polymerization, the polymer must be separated from the diluent and the diluent recovered for recycle.
A process and apparatus for passing a polymerization effluent, comprising solid polymer, unreacted monomer, diluent and minor amounts of contaminants, to a high pressure flash where most of the fluid components are flashed and wherein a slip stream comprising diluent and minor amounts of monomer is separated from the bulk of the flashed fluid components. The slip stream is subjected to olefin removal to give an essentially olefin-free stream for recycle to a catalyst mud preparation area. The bulk of the flashed fluid components are recycled directly back to the polymerization zone without expensive olefin removal, although treatment to remove other contaminants can optionally be performed. The polymer and entrained fluid is passed to a low pressure flash zone where the fluids are flashed off, compressed and joined with the flash from the high pressure flash tank. Because the bulk of the fluids are removed in the high pressure flash, compression and cooling of product fluids prior to recycle is kept to a minimum. |
---|