Magnetically actuated torsional micro-mechanical mirror system

Micro-electromechanical system (MEMS) mirrors (or micro-mirrors) have been evolving for approximately two decades as part of the drive toward integration of optical and electronic systems, for a range of uses including miniature scanners, optical switches, and video display systems. These structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McClelland, Robert William, Rensing, Noa More, Spitzer, Mark Bradley, Aquilino, Paul Daniel, Zavracky, Paul Martin
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro-electromechanical system (MEMS) mirrors (or micro-mirrors) have been evolving for approximately two decades as part of the drive toward integration of optical and electronic systems, for a range of uses including miniature scanners, optical switches, and video display systems. These structures consist of movable mirrors fabricated by micro-electronic processing techniques on wafer substrates (for example silicon, glass, or gallium arsenide). The torsional micro-mirror typically comprises a mirror and spring assembly suspended over a cavity formed in or on a base. The mirrors are electrically conductive, as is at least one region behind the mirror, affixed to the stationary base, so that an electric field can be formed between the mirror and the base. This field is used to move the mirror with respect to the base. An alternative comprises the use of magnetic materials and magnetic fields to move the mirrors. A torsional micro-mechanical mirror system includes a mirror assembly rotatably supported by a torsional mirror support assembly for rotational movement over and within a cavity in a base. The cavity is sized sufficiently to allow unimpeded rotation of the mirror assembly. The mirror assembly includes a support structure for supporting a reflective layer. The support structure is coplanar with and formed from the same wafer as the base. The torsional mirror support assembly includes at least one torsion spring formed of an electroplated metal. An actuator assembly is operative to apply a driving force to torsionally drive the torsional mirror support assembly, whereby torsional motion of the torsional mirror support assembly causes rotational motion of the mirror assembly. In another embodiment, a magnetic actuator assembly is provided to drive the mirror assembly. Other actuator assemblies are operative to push on the mirror assembly or provide electrodes spaced across the gap between the mirror assembly and the base. A process for fabricating the torsional micro-mirror is provided. The torsional micro-mirror is useful in various applications such as in biaxial scanner or video display systems.