Fiber optic apparatus and use thereof in combinatorial material science

The present invention generally relates to the characterization of liquid samples by optical techniques, and in preferred embodiments, characterization of polymer samples and non-polymer samples by light-scattering techniques. In particular, the invention relates to methods and apparatus for charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuebler, Sigrid C, Bennett, James
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention generally relates to the characterization of liquid samples by optical techniques, and in preferred embodiments, characterization of polymer samples and non-polymer samples by light-scattering techniques. In particular, the invention relates to methods and apparatus for characterizing liquid samples (e.g. solutions, emulsions, suspensions and/or dispersions) by serial or parallel analysis to determine commercially important properties of the samples or components thereof, such as particle size or particle size distribution. In preferred embodiments, the characterization of the liquid samples or of components thereof is effected in parallel with a probe head comprising an array fiber optic probes suitable for static light scattering and/or dynamic light scattering. The methods and devices disclosed herein are applicable, inter alia, to high-throughput characterization of liquid samples, and especially samples prepared by combinatorial materials science techniques. Methods, systems and devices are described for rapid characterization and screening of liquid samples to determine properties (e.g., particle size, particle size distribution, molar mass and/or molar mass distribution) thereof with static light scattering and/or dynamic light scattering. The liquid samples can be solutions, emulsions, suspensions or dispersions. One method, includes providing a vessel containing a liquid sample having an exposed surface that defines a gas-liquid sample interface, and analyzing the sample by light scattering methods that include transmitting light through the gas-liquid sample interface into the sample, and detecting light scattered from the sample or from a component thereof. Additional methods are directed to characterizing a plurality of liquid samples or components thereof. The methods, systems, and devices have applications in high-throughput screening, and particularly, in combinatorial materials research and in industrial process control.