Compositions and methods for treatment of neurological disorders and neurodegenerative diseases

The present invention relates to compositions and methods for the treatment of various neurological diseases and neurodegenerative disorders, particularly those affected by an overabundance of Amyloid Precursor Protein (APP). In particular, it has been discovered that APP synthesis is stimulated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Robert K.K, Wurtman, Richard J
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention relates to compositions and methods for the treatment of various neurological diseases and neurodegenerative disorders, particularly those affected by an overabundance of Amyloid Precursor Protein (APP). In particular, it has been discovered that APP synthesis is stimulated by activation of cell surface receptors coupled to the formation of cyclic adenosine monophosphate (cAMP). Moreover, it has been found that certain substances can inhibit APP synthesis, either directly or by antagonizing receptors coupled to cAMP formation. It has been discovered that the stimulation of -adrenergic receptors, which activate cAMP formation, give rise to increased APP and GFAP synthesis in astrocytes. Hence, the in vitro or in vivo exposure of neuronal cells to certain compositions comprising -adrenergic receptor ligands or agonists, including, e.g., norepinephrine, isoproterenol and the like, increases APP mRNA transcription and consequent APP overproduction. These increases are blocked by -adrenergic receptor antagonists, such as propranolol. The in vitro or in vivo treatment of these cells with 8Br-cAMP, prostaglandin E(PG E), forskolin, and nicotine ditartrate also increased APP synthesis, including an increase in mRNA and holoprotein levels, as well as an increase in the expression of glial fibrillary acidic protein (GFAP). Compositions and methods are disclosed of regulating APP overexpression and mediating reactive astrogliosis through cAMP signaling or the activation of -adrenergic receptors. It has further been found that the increase in APP synthesis caused by 8Br-cAMP, PG E, or forskolin is inhibited by immunosuppressants, immunophilin ligands, or anti-inflammatory agents, such as cyclosporin A, and FK-506 (tacrolimus), as well as ion-channel modulators, including ion chelating agents such as EGTA, or calcium/calmodulin kinase inhibitors, such as KN93. The present invention has broad implications in the alleviation, treatment, or prevention of neurological disorders and neurodegenerative diseases, including Alzheimer's Disease.