System and method for controlling air bag deployment systems

Be it known that I, James S. Finn, a citizen of United States, residing at 2413 Woodview Drive, Huntsville, Ala. 35801 have invented a new and useful "System And Method For Controlling Air Bag Deployment Systems." A system and method for controlling air bag deployment systems based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Finn, James S
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Be it known that I, James S. Finn, a citizen of United States, residing at 2413 Woodview Drive, Huntsville, Ala. 35801 have invented a new and useful "System And Method For Controlling Air Bag Deployment Systems." A system and method for controlling air bag deployment systems based on the presence, position, size, and weight of a person present in an automobile or a child seat present in an automobile is disclosed. In one embodiment, the system includes a radar transmitter, radar receiver, and a processor. In alternative embodiments, the system further includes a weight sensor, a reflector, and a child seat reflector. The transmitter generates and transmits ultra-wide band (UWB) pulses and the receiver generates a receiver signal based on reflected UWB pulses received by the receiver. The receiver signal contains information indicative of the presence, position, and size of a person in the automobile. In addition, the receiver signal may contain information regarding the presence of a child seat in the passenger side seat of the automobile. The weight sensor generates a weight signal indicative of a weight present in either the passenger side seat or the driver side seat of the automobile. The processor either inhibits deployment or controls the rate of deployment of an airbag located in the automobile based on the receiver signal and the weight signal. Alternatively, the processor compares the receiver signal and the weight signal to a set of predetermined receiver signal profiles and weight signal profiles and controls deployment of the airbag based on matching receiver signal and weight signal profiles.