Method for reducing coefficient of thermal expansion in chip attach packages
The presence of different materials within a chip attach package, leads to different coefficients of thermal expansion within the package. The differential expansion can cause warpage within these packages, including flip chip attach packages. This warpage can fatigue chip attach joints and also cau...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The presence of different materials within a chip attach package, leads to different coefficients of thermal expansion within the package. The differential expansion can cause warpage within these packages, including flip chip attach packages. This warpage can fatigue chip attach joints and also cause chip cracking.
A simple, inexpensive, drillable, reduced CTE laminate and circuitized structures comprising the reduced CTE laminate, is provided. The reduced CTE laminate comprises: from about 40% to 75%, preferably from about 55% to 65%, by weight resin; from about 0.05% to 0.3%, preferably from about 0.08% to 0.10%, by weight curing agent; from about 25% to 60%, preferably from about 30% to 40%, by weight, woven cloth; from about 1% to 15%, preferably from about 5% to 10%, by volume, non-woven quartz mat. The present invention also generally relates to a method for reducing the CTE of circuitized structures, and to methods for making reduced CTE laminate and circuitized structures comprising reduced CTE laminate. The method for making reduced CTE laminate and laminate structures comprises the following steps: providing non-woven quartz mat; providing a prepreg, preferably not B-stage cured to not more than about 40%, preferably not more than 30% of full cure; sandwiching the non-woven quartz mat between two layers of prepreg, and reflowing the resin of the prepreg into the quartz mat. Optionally, the reduced CTE laminate is sandwiched between two layers of metal, preferably copper. |
---|