Applications of reversible crosslinking and co-treatment in stabilization and viral inactivations of erythrocytes

1. Field of the Invention One aspect of the present invention is a method for storing tissues and cells (typically erythrocytes) having the step of (1) stabilizing the cells with a reversible stabilizing agent. This method typically will have the additional steps of (2) loading the cells with a cryo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bakaltcheva, Irina B, Rudolph, Alan S, Spargo, Barry J, Leslie, Samuel B, Groel, Thomas R
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Field of the Invention One aspect of the present invention is a method for storing tissues and cells (typically erythrocytes) having the step of (1) stabilizing the cells with a reversible stabilizing agent. This method typically will have the additional steps of (2) loading the cells with a cryoprotectant, and typically (3) storing the cells in liquid, frozen, or dry state. This method will also typically have the additional step of (4) prior to use, reversing the stabilization reaction. Preferably, the erythrocytes are pre-treated with CO to complex the hemoglobin with CO. It is anticipated that a practical method according to the invention will include reoxygenation of the erythrocytes, and also washing out reagents prior to in vivo use. Another aspect of the present invention is an erythrocyte that has had its shape stabilized by the reversible crosslinking of proteins in the erythrocyte, such as the structural proteins of the cytoskeleton. Another aspect of the invention is a population of such reversibly crosslinked erythrocytes. Another aspect of the invention is the in vivo use of such erythrocytes, after the reversal of the crosslinking reaction. The use of more gentle, reversible cross-linking as described below is desirable to result in the recovery of erythrocyte deformability and extended post-transfusion survival.