System and method for real time reservoir management

Historically, most oil and gas reservoirs have been developed and managed under timetables and scenarios as follows: a preliminary investigation of an area was conducted using broad geological methods for collection and analysis of data such as seismic, gravimetric, and magnetic data, to determine r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thomas, Jacob, Godfrey, Craig William, Vidrine, William Launey, Wauters, Jerry Wayne, Seiler, Douglas Donald
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Historically, most oil and gas reservoirs have been developed and managed under timetables and scenarios as follows: a preliminary investigation of an area was conducted using broad geological methods for collection and analysis of data such as seismic, gravimetric, and magnetic data, to determine regional geology and subsurface reservoir structure. In some instances, more detailed seismic mapping of a specific structure was conducted in an effort to reduce the high cost, and the high risk, of an exploration well. A test well was then drilled to penetrate the identified structure to confirm the presence of hydrocarbons, and to test productivity. In lower-cost onshore areas, development of a field would commence immediately by completing the test well as a production well. In higher cost or more hostile environments such as the North Sea, a period of appraisal would follow, leading to a decision as to whether or not to develop the project. In either case, based on inevitably sparse data, further development wells, both producers and injectors would be planned in accordance with a reservoir development plan. Once production and/or injection began, more dynamic data would become available, thus, allowing the engineers and geoscientists to better understand how the reservoir rock was distributed and how the fluids were flowing. As more data became available, an improved understanding of the reservoir was used to adjust the reservoir development plan resulting in the familiar pattern of recompletion, sidetracks, infill drilling, well abandonment, etc. Unfortunately, not until the time at which the field was abandoned, and when the information is the least useful, did reservoir understanding reach its maximum. A method of real time field wide reservoir management comprising the steps of processing collected field wide reservoir data in accordance with one or more predetermined algorithms to obtain a resultant desired field wide production/injection forecast, generating a signal to one or more individual well control devices instructing the device to increase or decrease flow through the well control device, transmitting the signal to the individual well control device, opening or closing the well control device in response to the signal to increase or decrease the production for one or more selected wells on a real time basis. The system for field wide reservoir management comprising a CPU for processing collected field wide reservoir data, generating a resultan