Fibroblast growth factor receptors

This invention relates to a unique class of fibroblast growth factor receptors, nucleic acids encoding same and expression of the growth factor receptors in recombinant systems. This invention also relates to the use of the expressed receptors or fragments thereof in screens for candidate drugs whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dionne, Craig A, Crumley, Gregg B, Jaye, Michael C, Schlessinger, Joseph
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This invention relates to a unique class of fibroblast growth factor receptors, nucleic acids encoding same and expression of the growth factor receptors in recombinant systems. This invention also relates to the use of the expressed receptors or fragments thereof in screens for candidate drugs which act as receptor antagonists. The complete cDNA cloning of two human genes previously designated flg and bek is disclosed. These genes encode for two similar but distinct surface receptors comprised of an extracellular domain with three immunoglobulin-like regions, a single transmembrane domain, and a cytoplasmic portion containing a tyrosine kinase domain with a typical kinase insert. The expression of these two cDNAs in transfected NIH-3T3 cells led to the biosynthesis of proteins of 150 kDa and 135 kDa for flg and bek respectively. Direct binding experiments with radiolabeled acidic FGF (aFGF), basic FGF (bFGF), or kFGF inhibition of binding with native growth factors, and Scatchard analysis of the binding data indicated that bek and flg bind aFGF, bFGF, or kFGF with dissociation constants of (2-15)×10M. The high affinity binding of three distinct growth factors to each of two different receptors represents a unique double redundancy without precedence among polypeptide growth factor/receptor interactions. The use of transformed host cells overexpressing flg or bek or biologically active fragments thereof for drug screening is disclosed.