On separation axioms of uniform bundles and sheaves
[EN] In the context of the theory of uniform bundles in the sense of J. Dauns and K. H. Hofmann, the topology of the fiber space of a uniform bundle depends on the assumption of upper semicontinuity of its defining set of pseudometrics when composed with local sections. In this paper we show that th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] In the context of the theory of uniform bundles in the sense of J. Dauns and K. H. Hofmann, the topology of the fiber space of a uniform bundle depends on the assumption of upper semicontinuity of its defining set of pseudometrics when composed with local sections. In this paper we show that the additional hypothesis of lower semicontinuity of these functions secures that the fiber space of the uniform bundle is Hausdorff, regular or completely regular provided that the base space has the corresponding separation axiom. Similar results for the particular important case of sheaves of sets follow suit.
The first author acknowledges the financial support by the Fundación Mazda para el Arte y la Ciencia.
Neira, CM.; Varela, J. (2004). On separation axioms of uniform bundles and sheaves. Applied General Topology. 5(2):155-171. https://doi.org/10.4995/agt.2004.1966 |
---|