Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance

[EN] The purpose of this article is to prove some fixed point theorems for simulation functions in complete b-metric spaces with partially ordered by using wt-distance which introduced by Hussain et al. Also, we give some examples to illustrate our main results. This project was supported by the The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mongkolkeha, Chirasak, Cho, Yeol Je, Kumam, Poom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] The purpose of this article is to prove some fixed point theorems for simulation functions in complete b-metric spaces with partially ordered by using wt-distance which introduced by Hussain et al. Also, we give some examples to illustrate our main results. This project was supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT. The first author was supported by Thailand Research Fund (Grant No. TRG5880221) and Kasetsart University Research and Development Institute (KURDI). Also, Yeol Je Cho was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014R1A2A2A01002100). The authors are also grateful to the referee by several useful suggestions that have improved the first version of the paper. Mongkolkeha, C.; Cho, YJ.; Kumam, P. (2017). Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance. Applied General Topology. 18(1):91-105. https://doi.org/10.4995/agt.2017.6322 Abdou, A. A. N., Je Cho, Y., & Saadati, R. (2015). Distance type and common fixed point theorems in Menger probabilistic metric type spaces. Applied Mathematics and Computation, 265, 1145-1154. doi:10.1016/j.amc.2015.05.052 Arvanitakis, A. D. (2003). A proof of the Generalized Banach Contraction Conjecture. Proceedings of the American Mathematical Society, 131(12), 3647-3656. doi:10.1090/s0002-9939-03-06937-5 A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37. S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133-181. V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9. Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075 S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5 Khojasteh, F., Shukla, S., & Radenovic, S. (2015). A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6), 1189