Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators
The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the transmission spectrum of the waveguide. Here we show via numerical simulations that narrower and steeper Fano-l...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric
waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the
transmission spectrum of the waveguide. Here we show via numerical simulations that narrower
and steeper Fano-like resonances can be obtained by asymmetrically coupling in the near field a
larger nanostrip supporting an electric quadrupole in the frequency regime of interest to the
original, shorter nanostrip. Under certain conditions, the spectral response corresponding to the
electromagnetically induced transparency phenomenon is observed. We suggest that this hybrid
plasmonic photonic approach could be especially relevant for sensing or all-optical switching
applications in a photonic integrated platform such as silicon photonics.
RO acknowledges support from Generalitat Valenciana through the VALi+d postdoctoral program (exp APOSTD/2014/004). AM acknowledges funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and NANOMET PLUS-PROMETEOII/2014/034 (Conselleria d'Educacio, Cultura i Esport).
Ortuño Molinero, R.; Cortijo-Munuera, M.; Martínez Abietar, AJ. (2017). Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. Journal of Optics. 19(2):025003-1-025003-7. https://doi.org/10.1088/2040-8986/aa51e0
Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630
Zijlstra, P., Paulo, P. M. R., & Orrit, M. (2012). Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnology, 7(6), 379-382. doi:10.1038/nnano.2012.51
Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244
Husnik, M., Niegemann, J., Busch, K., & Wegener, M. (2013). Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 38(22), 4597. doi:10.1364/ol.38.004597
Fan, P., Yu, Z., Fan, S., & Brongersma, M. L. (2014). Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 13(5), 471-475. doi:10.1038/nmat3927
Rodríguez-Fortuño, F. J., Martínez-Marco, M., Tomás-Navarro, B., Ortuño, R., Martí, J., Martínez, A., & Rodríguez-Cantó, P. J. (2011). |
---|