Generalised complex geometry in thermodynamical fluctuation theory
We present a brief overview of some key concepts in the theory of generalized complex manifolds. This new geometry interpolates, so to speak, between symplectic geometry and complex geometry. As such it provides an ideal framework to analyze thermodynamical fluctuation theory in the presence of grav...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a brief overview of some key concepts in the theory of generalized complex manifolds. This new geometry interpolates, so to speak, between symplectic geometry and complex geometry. As such it provides an ideal framework to analyze thermodynamical fluctuation theory in the presence of gravitational fields. To illustrate the usefulness of generalized complex geometry, we examine a simplified version of the Unruh effect: the thermalising effect of gravitational fields on the Schroedinger wavefunction.
Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM. (2015). Generalised complex geometry in thermodynamical fluctuation theory. Entropy. 17(8):5888-5902. doi:10.3390/e17085888
Velazquez Abad, L. (2012). Principles of classical statistical mechanics: A perspective from the notion of complementarity. Annals of Physics, 327(6), 1682-1693. doi:10.1016/j.aop.2012.03.002
Bravetti, A., & Lopez-Monsalvo, C. S. (2015). Para-Sasakian geometry in thermodynamic fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 48(12), 125206. doi:10.1088/1751-8113/48/12/125206
Bravetti, A., Lopez-Monsalvo, C. S., & Nettel, F. (2015). Contact symmetries and Hamiltonian thermodynamics. Annals of Physics, 361, 377-400. doi:10.1016/j.aop.2015.07.010
Quevedo, H., Vázquez, A., Macias, A., Lämmerzahl, C., & Camacho, A. (2008). The geometry of thermodynamics. AIP Conference Proceedings. doi:10.1063/1.2902782
Rajeev, S. G. (2008). Quantization of contact manifolds and thermodynamics. Annals of Physics, 323(3), 768-782. doi:10.1016/j.aop.2007.05.001
Rajeev, S. G. (2008). A Hamilton–Jacobi formalism for thermodynamics. Annals of Physics, 323(9), 2265-2285. doi:10.1016/j.aop.2007.12.007
Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605-659. doi:10.1103/revmodphys.67.605
Velazquez, L. (2013). Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 46(34), 345003. doi:10.1088/1751-8113/46/34/345003
Bardeen, J. M., Carter, B., & Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2), 161-170. doi:10.1007/bf01645742
Padmanabhan, T. (2010). Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics, 73(4), 046901. doi:10.1088/0034-4885/73/4/046901
Padmanabhan, T. (2014). General relativity from a thermodynamic perspective. General Relativity and |
---|