Design of high-order iterative methods for nonlinear systems by using weight-function procedure

We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order, adding only one functional evaluation of the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Artidiello Moreno, Santiago de Jesús, Cordero Barbero, Alicia, Torregrosa Sánchez, Juan Ramón, Vassileva, M.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order, adding only one functional evaluation of the vectorial nonlinear function. We perform numerical tests to compare the proposed methods with other schemes in the literature and test their effectiveness on specific nonlinear problems. Moreover, some real basins of attraction are analyzed in order to check the relation between the order of convergence and the set of convergent starting points. Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, M. (2015). Design of high-order iterative methods for nonlinear systems by using weight-function procedure. Abstract and Applied Analysis. 2015(289029):1-12. doi:10.1155/2015/289029 He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043 Gerlach, J. (1994). Accelerated Convergence in Newton’s Method. SIAM Review, 36(2), 272-276. doi:10.1137/1036057 Cordero, A., & Torregrosa, J. R. (2006). Variants of Newton’s method for functions of several variables. Applied Mathematics and Computation, 183(1), 199-208. doi:10.1016/j.amc.2006.05.062 Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002 Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4 Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081 Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. N