A comparison between padding and bath exhaustion to apply microcapsules onto cotton
The final publication is available at Springer via http://dx.doi.org/10.1007/s10570-015-0600-8 [EN] The use of Microcapsules has increased in the textile sector. They have been applied as a possible means of introducing new products to textiles, such as insect repellents, antibiotics, skin moisturiz...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The final publication is available at Springer via http://dx.doi.org/10.1007/s10570-015-0600-8
[EN] The use of Microcapsules has increased in the textile sector. They have been applied as a possible means of introducing new products to textiles, such as insect repellents, antibiotics, skin moisturizers, etc. Microencapsulation technology has improved the fragrance durability on fabrics. Historically, the durability of the fragrance was poor, especially once the fabric had been washed. Microcapsules have been used in textiles for many years, however their previous characterization, adhesion behaviour and permanence on the fabrics are not well known. Nowadays the majority of textile industries are not able to characterize commercial products, or to study the process of adhering the microcapsule to the fibre's surface nor their functionality. Thus, the characterization of microencapsulated fabrics with different active core and the knowledge of the various application processes becomes a major challenge in the field of microcapsules use. There are various industrial processes to apply microcapsules, but determining optimal amounts of products, temperature, conditions and other process variables are an important challenge for the textile sector in order to achieve the highest depositions and retention of microcapsules. This work is focused on determining and quantifying presence fragrance microcapsules when applied onto fabrics by padding and by bath exhaustion and determining which method is the most effective. Consequently, diverse analysis techniques such as microscopy (SEM), spectroscopy FTIR and XPS have been used. We concluded that proposed techniques seem to be useful to compare fabrics treated with microcapsules. Results demonstrate that padding application gives better yields than bath exhaustion.
Bonet Aracil, MA.; Monllor Pérez, P.; Capablanca Francés, L.; Gisbert Paya, J.; Díaz-García, P.; Montava Seguí, IJ. (2015). A comparison between padding and bath exhaustion to apply microcapsules onto cotton. Cellulose. 22(3):2117-2127. doi:10.1007/s10570-015-0600-8
Bonet M, Quijada C, Muñoz S, Cases F (2004) Characterization of ethylcellulose with different degrees of substitution (DS): a diffuse-reflectance infrared study. Can J Anal Sci Spectrosc 49(4):234–239
Bonet M, Capablanca L, Monllor P, Díaz P, Montava I (2012) Studying bath exhaust as a method to apply microcapsules on fabrics. J Text Inst 103(6):629–635
Buchert J, Pere LS, Johanson JM, Campbell J |
---|