Web spider defense technique in wireless sensor networks
Wireless sensor networks (WSNs) are currently widely used in many environments. Some of them gather many critical data, which should be protected from intruders. Generally, when an intruder is detected in the WSN, its connection is immediately stopped. But this way does not let the network administr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wireless sensor networks (WSNs) are currently widely used in many environments. Some of them gather many critical data, which should be protected from intruders. Generally, when an intruder is detected in the WSN, its connection is immediately stopped. But this way does not let the network administrator gather information about the attacker and/or its purposes. In this paper, we present a bioinspired system that uses the procedure taken by the web spider when it wants to catch its prey. We will explain how all steps performed by the web spider are included in our system and we will detail the algorithm and protocol procedure. A real test bench has been implemented in order to validate our system. It shows the performance for different response times, the CPU and RAM consumption, and the average and maximum values for ping and tracert time responses using constant delay and exponential jitter.
This work has been partially supported by the "Ministerio de Ciencia e Innovacion", through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental", Project TEC2011-27516.
Cánovas Solbes, A.; Lloret, J.; Macias Lopez, EM.; Suarez Sarmiento, A. (2014). Web spider defense technique in wireless sensor networks. International Journal of Distributed Sensor Networks. 2014:1-7. https://doi.org/10.1155/2014/348606
Bri, D., Garcia, M., Lloret, J., & Dini, P. (2009). Real Deployments of Wireless Sensor Networks. 2009 Third International Conference on Sensor Technologies and Applications. doi:10.1109/sensorcomm.2009.69
Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459
Xie, M., Han, S., Tian, B., & Parvin, S. (2011). Anomaly detection in wireless sensor networks: A survey. Journal of Network and Computer Applications, 34(4), 1302-1325. doi:10.1016/j.jnca.2011.03.004
Yu, Y., Li, K., Zhou, W., & Li, P. (2012). Trust mechanisms in wireless sensor networks: Attack analysis and countermeasures. Journal of Network and Computer Applications, 35(3), 867-880. doi:10.1016/j.jnca.2011.03.005
Zhu, W. T., Zhou, J., Deng, R. H., & Bao, F. (2012). Detecting node replication attacks in wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(3), 1022-1034. doi:10.1016/j.jnca.2012.01.002
Maleh, Y., & Ezzati, A. (2013). A Review of Security Attacks and Intrusion D |
---|