Diffusion Weighted Image Denoising using overcomplete Local PCA

Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into considera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manjón Herrera, José Vicente, Coupé, Pierrick, Concha, Luis, Buades, Antonio, Collins, Louis, Robles Viejo, Montserrat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters. This work has been supported by the Spanish grant TIN2011-26727 from Ministerio de Ciencia e Innovacion. This work has been also partially supported by the French grant "HR-DTI" ANR-10-LABX-57 funded by the TRAIL from the French Agence Nationale de la Recherche within the context of the Investments for the Future program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Manjón Herrera, JV.; Coupé, P.; Concha, L.; Buades, A.; Collins, L.; Robles Viejo, M. (2013). Diffusion Weighted Image Denoising using overcomplete Local PCA. PLoS ONE. 8(9):1-12. https://doi.org/10.1371/journal.pone.0073021 Sundgren, P. C., Dong, Q., Gómez-Hassan, D., Mukherji, S. K., Maly, P., & Welsh, R. (2004). Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology, 46(5), 339-350. doi:10.1007/s00234-003-1114-x Johansen-Berg, H., & Behrens, T. E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current Opinion in Neurology, 19(4), 379-385. doi:10.1097/01.wco.0000236618.82086.01 Jones DK, Basser PJ (2004) Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magnetic Resonance in Medicine 52, 979–993. Chen, B., & Hsu, E. W. (2005). Noise removal in magnetic resonance diffusion tensor imaging. Magnetic Resonance in Medicine, 54(2), 393-401. doi:10.1002/mrm.20582 Aja-Fernandez, S., Niethammer, M., Kubicki, M., Shenton, M. E., & Westin, C.-F. (2008). Restoration of DWI Data Using a Rician LMMSE Estimator. IEEE Transactions on Medical Imaging, 27(10), 1389-1403. doi:10.1109/tmi.2008.920609 Basu S, Fletcher T, Whitaker R (2006) Rician noise removal in diffusi