Fibronectin fixation on poly(ethyl acrylate)-based copolymer
The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical composition has been designed to increase wettability and to introduce acid functi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical composition has been designed to increase wettability and to introduce acid functional groups. FN was adsorbed to PEA, poly(ethyl acrylate-co-hydroxyethyl acrylate), poly(ethyl acrylate-co-acrylic acid), and poly(ethyl acrylate-co-methacrylic acid) copolymers, and covalently cross-linked to poly(ethyl acrylate-co-acrylic acid) and poly(ethyl acrylate-co-methacrylic acid) copolymers. Amount of adhered FN and exhibition of RGD and FNIII7-10 fragments involved in cell adhesion were quantified with enzyme-linked immunosorbent assay tests. Even copolymers with a lower content of the hydrophilic component showed a decrease in water contact angle. In addition, FN was successfully fixed on all surfaces, especially on the hydrophobic surfaces. However, it was demonstrated that exposure of its cell adhesion sequences, which is the key factor in cell adhesion and proliferation, was higher for hydrophilic surfaces. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.
Contract grant sponsors: Centre for Industrial Technological Development (CDTI) of Ministry of Economy and Competitiveness, Project Customized Eye Care-Oftalmologia personalizada _CEYEC CENIT-Sol 00028336 SFPECEPP and Health Institute Carlos III through the CIBER- BBN (Bioingenieria, Biomateriales y Nanomedicina); CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund
Briz, N.; Antolinos Turpín, CM.; Alio, J.; Garagorri, N.; Gómez Ribelles, JL.; Gómez-Tejedor, JA. (2013). Fibronectin fixation on poly(ethyl acrylate)-based copolymer. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 101B(6):991-997. https://doi.org/10.1002/jbm.b.32907
Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3
Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1
Ertel, S. I., R |
---|