The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry

[EN] We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hevilla, V, Sonseca Olalla, Agueda, Giménez Torres, Enrique, Echevarría, C, Muñoz-Bonilla, A, Fernández-Garcia, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, coupled with a rotatory collector. The obtained fibers were extensively studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXS), employing synchrotron radiation. The incorporation of the PMSs on the PLA fibers did not significantly affect the fiber diameters, whereas the alignment was almost maintained. The crystallinity and thermal properties were also slightly modified with the addition of PMSs, and an increase in the degree of crystallinity and in the glass transition temperature of the blend compared to PLA was observed. Remarkably, the PLA/PMSs fibers were more ductile due to the elastomeric character of PMS, with higher values of elongation at break and tensile strengths, and a smaller Young modulus in comparison with the PLA fibers. These modifications of the properties were more noticeable in the case of the acrylated PMS, which also provided readily available functional groups at the surface for further chemical reactions, such as the Michael addition or crosslinking processes. This work was funded by the MICINN (project PID2019-104600RB-I00) and by the Valencian Autonomous Government, Generalitat Valenciana, GVA (GV/2021/182). The synchrotron experiments were performed at beamlines BL11-NCD-SWEET and MIRAS at ALBA Synchrotron Light Facility and authors would like to thank the help of ALBA staff. Authors also thank M.L. Cerrada for her invaluable discussions on crystallinity. Authors thank T.M. Díez-Rodríguez and E. Blázquez-Blázquez for conducting some tests. A. S. acknowledges her APOSTD/2018/228 and PAID-10-19 postdoctoral contracts from the Education, Research, Culture and Sport Council from the Government of Valencia and from the Polytechnic University of Valencia, respectively. Hevilla, V.; Sonseca Olalla, A.; Giménez Torres, E.; Echevarría, C.; Muñoz-Bonilla, A.; Fernández-Garcia, M. (2022). The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry. Polymers. 14(16):1-14. https://doi.org/10.3390/polym14163342