Process mining for healthcare: Characteristics and challenges

[EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Desp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Munoz Gama, Jorge, Martin, Niels, Fernández Llatas, Carlos, Johnson, Owen A, Sepúlveda, Marcos, Helm, Emmanuel, Galvez-Yanjari, Victor, Rojas, Eric, Martinez-Millana, Antonio, Aloini, Davide, Amantea, Ilaria Angela, Andrews, Robert, Arias, Michael, Beerepoot, Iris, Benevento, Elisabetta, Ibáñez Sánchez, Gema, Traver Salcedo, Vicente, Valero Ramon, Zoe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future. This work is partially supported by ANID FONDECYT 1220202, Direccion de Investigacion de la Vicerrectoria de Investigacion de la Pontificia Universidad Catolica de Chile-PUENTE [Grant No. 026/2021] ; and Agencia Nacional de Investigacion y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019-21190116, ANID-PFCHA/Doctorado Nacional/2020-21201411] . With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) . The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan) Munoz Gama, J.; Martin, N.; Fernández Llatas, C.; Johnson, OA.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V... (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics. 127:1-15. https://doi.org/10.1016/j.jbi.2022.103994