Random Fractional Hermite Differential Equation: A full study in mean square sense

[EN] In this contribution a full probabilistic study for the Random Fractional Hermite differential equation is performed. Firstly, applying the random fractional Fr¿obenius method we will construct a solution convergent in mean square sense. Then, we will obtain reliable approximations for the mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burgos-Simon, Clara, Caraballo, T, Cortés, J.-C, Villanueva Micó, Rafael Jacinto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] In this contribution a full probabilistic study for the Random Fractional Hermite differential equation is performed. Firstly, applying the random fractional Fr¿obenius method we will construct a solution convergent in mean square sense. Then, we will obtain reliable approximations for the mean and for the standard deviation taking into account that the solution described by a power series converges in mean square sense. After that, we will go a step further computing first probability density function of the solution. Finally, we show one numerical example to illustrate the theoretical findings. Burgos-Simon, C.; Caraballo, T.; Cortés, J.; Villanueva Micó, RJ. (2022). Random Fractional Hermite Differential Equation: A full study in mean square sense. Universitat Politècnica de València. 36-40. http://hdl.handle.net/10251/192417