Random Fractional Hermite Differential Equation: A full study in mean square sense
[EN] In this contribution a full probabilistic study for the Random Fractional Hermite differential equation is performed. Firstly, applying the random fractional Fr¿obenius method we will construct a solution convergent in mean square sense. Then, we will obtain reliable approximations for the mean...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] In this contribution a full probabilistic study for the Random Fractional Hermite differential equation is performed. Firstly, applying the random fractional Fr¿obenius method we will construct a
solution convergent in mean square sense. Then, we will obtain reliable approximations for the
mean and for the standard deviation taking into account that the solution described by a power
series converges in mean square sense. After that, we will go a step further computing first probability density function of the solution. Finally, we show one numerical example to illustrate the
theoretical findings.
Burgos-Simon, C.; Caraballo, T.; Cortés, J.; Villanueva Micó, RJ. (2022). Random Fractional Hermite Differential Equation: A full study in mean square sense. Universitat Politècnica de València. 36-40. http://hdl.handle.net/10251/192417 |
---|