Evolution of flow characteristics in a centrifugal compressor with an increase in operating speed

[EN] Developments in materials, manufacturing and computing methods have catalysed the generation of efficient compressor designs with higher specific power outputs. Centrifugal compressors have become pervasive in environments demanding a combination of higher power with smaller sizes such as unman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharma, Sidharath, GARCIA TISCAR, JORGE, Allport, John M, Barrans, Simon, Nickson, Ambrose K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] Developments in materials, manufacturing and computing methods have catalysed the generation of efficient compressor designs with higher specific power outputs. Centrifugal compressors have become pervasive in environments demanding a combination of higher power with smaller sizes such as unmanned aerial vehicles, micro gas turbines and turbochargers. These compressors are expected to perform optimally in a range of operational speeds and mass flow states with low acoustic emissions. The impact of operating speed on the flow and acoustic characteristics of a ported shroud compressor has been explored in this work. The operation of the open and blocked configurations of the compressor at the design and near surge points each of a lower and a higher speedline was numerically and experimentally investigated. Comparing the results, the model was shown to predict the operation of the compressor for both configurations at the investigated operating points satisfactorily in terms of both performance and dominant acoustic features. With an increase in the velocity and the Mach number due to increased operational speed, changes in the flow behaviour in the inducer and diffuser were observed. An increase in operational speed was shown to generally increase the overall acoustic emission of the compressor for both configurations. The number of distinct tones in the acoustic output and their magnitude were also seen to be a function of operating speed. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The project was sponsored and supported by the BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2021). Evolution of flow characteristics in a centrifugal compressor with an increase in operating speed. International Journal of Engine Research. 22(5):1592-1604. https://doi.org/10.1177/1468087420916606