Approaching the genetic dissection of indirect adventitious organogenesis process in tomato explants
[EN] The screening of 862 T-DNA lines was carried out to approach the genetic dissection of indirect adventitious organogenesis in tomato. Several mutants defective in different phases of adventitious organogenesis, namely callus growth (tdc-1), bud differentiation (tdb-1,-2,-3) and shoot-bud develo...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] The screening of 862 T-DNA lines was carried out to approach the genetic dissection of indirect adventitious organogenesis in tomato. Several mutants defective in different phases of adventitious organogenesis, namely callus growth (tdc-1), bud differentiation (tdb-1,-2,-3) and shoot-bud development (tds-1) were identified and characterized. The alteration of the TDC-1 gene blocked callus proliferation depending on the composition of growth regulators in the culture medium. Calli from tds-1 explants differentiated buds but did not develop normal shoots. Histological analysis showed that their abnormal development is due to failure in the organization of normal adventitious shoot meristems. Interestingly, tdc-1 and tds-1 mutant plants were indistinguishable from WT ones, indicating that the respective altered genes play specific roles in cell proliferation from explant cut zones (TDC-1 gene) or in the organization of adventitious shoot meristems (TDS-1 gene). Unlike the previous, plants of the three mutants defective in the differentiation of adventitious shoot-buds (tdb-1,-2,-3) showed multiple changes in vegetative and reproductive traits. Cosegregation analyses revealed the existence of an association between the phenotype of the tdb-3 mutant and a T-DNA insert, which led to the discovery that the SlMAPKKK17 gene is involved in the shoot-bud differentiation process.
Vicente Moreno and Rafael Lozano thank the Ministry of Science and Innovation (State Innovation Agency) for granting the projects PID2019-110833RB-C32 and PID2019-110833RB-C31. Benito Pineda's work in the context of this article has been funded by 'Aid for First Research Projects (PAID-06-18)' by the Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Valencia, Spain'. The PhD fellowship for Jorge Sanchez-Lopez and Marybel Jaquez-Gutierrez were funded by the Universidad de Sinaloa and the CONACYT of Mexico.
Sanchez-Lopez, J.; Atarés Huerta, A.; Jaquez-Gutierrez, M.; Ortiz-Atienza, A.; Capel, C.; Pineda Chaza, BJ.; García Sogo, B... (2021). Approaching the genetic dissection of indirect adventitious organogenesis
process in tomato explants. Plant Science. 302:1-14. https://doi.org/10.1016/j.plantsci.2020.110721 |
---|