Signaling in the tomato immunity against Fusarium oxysporum

[EN] New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant-pathogen interactions and unraveling new chemical control strategies. GC-MS-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hernández-Aparicio, Francisco Jorge, Lisón, Purificación, Rodrigo Bravo, Ismael, Belles Albert, José Mª, López-Gresa, María Pilar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant-pathogen interactions and unraveling new chemical control strategies. GC-MS-based metabolomics, along with a phytohormone analysis of a compatible and incompatible interaction between tomato plants and Fusarium oxysporum f. sp. lycopersici, revealed the specific volatile chemical composition and the plant signals associated with them. The susceptible tomato plants were characterized by the over-emission of methyl- and ethyl-salicylate as well as some fatty acid derivatives, along with an activation of salicylic acid and abscisic acid signaling. In contrast, terpenoids, benzenoids, and 2-ethylhexanoic acid were differentially emitted by plants undergoing an incompatible interaction, together with the activation of the jasmonic acid (JA) pathway. In accordance with this response, a higher expression of several genes participating in the biosynthesis of these volatiles, such as MTS1, TomloxC, TomloxD, and AOS, as well as JAZ7, a JA marker gene, was found to be induced by the fungus in these resistant plants. The characterized metabolome of the immune tomato plants could lead to the development of new resistance inducers against Fusarium wilt treatment. Hernández-Aparicio, FJ.; Lisón, P.; Rodrigo Bravo, I.; Belles Albert, JM.; López-Gresa, MP. (2021). Signaling in the tomato immunity against Fusarium oxysporum. Molecules. 26(7):1-17. https://doi.org/10.3390/molecules26071818