Towards the edge intelligence: Robot assistant for the detection and classification of human emotions
[EN] Deep learning is being introduced more and more in our society. Nowadays, there are very few applications that do not use deep learning as a classification tool. One of the main application areas is focused on improving people¿s life quality, allowing to create personal assistants with canned b...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] Deep learning is being introduced more and more in our society. Nowadays, there are very few applications that do not use deep learning as a classification tool. One of the main application areas is focused on improving people¿s life quality, allowing to create personal assistants with canned benefits. More recently, with the proliferation of mobile computing and the emergence of the Internet of Things (IoT), billions of mobile and IoT devices are connected to the Internet. This allows the generation of millions of bytes of information about sensors, images, sounds, etc. Driven by this trend, there is an urgent need to push the IoT frontiers to the edge of the network, in order to decrease this massive sending of information to large exchanges for analysis. As a result of this trend, a new discipline has emerged: edge intelligence or edge AI, a widely recognised and promising solution that attracts with special interest to the community of researchers in artificial intelligence. We adapted edge AI to classify human emotions. Results show how edge AI-based emotion classification can greatly benefit in the field of cognitive assistants for the elderly or people living alone.
This work was partly supported by the Generalitat Valenciana
(PROMETEO/2018/002) and by the Spanish Government (RTI2018-095390-B-C31).
Universitat Politecnica de Valencia Research Grant PAID-10-19.
Rincón Arango, JA.; Julian Inglada, VJ.; Carrascosa Casamayor, C. (2020). Towards the edge intelligence: Robot assistant for the detection and classification of human emotions. Springer. 31-41. https://doi.org/10.1007/978-3-030-51999-5_3
Chang, A.: The role of artificial intelligence in digital health. In: Wulfovich, S., Meyers, A. (eds.) Digital Health Entrepreneurship. HI, pp. 71–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12719-0_7
Yang, L., Henthorne, T.L., George, B.: Artificial intelligence and robotics technology in the hospitality industry: current applications and future trends. In: George, B., Paul, J. (eds.) Digital Transformation in Business and Society, pp. 211–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-08277-2_13
Khayyam, H., Javadi, B., Jalili, M., Jazar, R.N.: Artificial intelligence and Internet of Things for autonomous vehicles. In: Jazar, R.N., Dai, L. (eds.) Nonlinear Approaches in Engineering Applications, pp. 39–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18963-1_2
Liang, F., Yu, W., Liu, X., Griffith, D., Golmie, |
---|