Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models
[EN] Access to the small bowel by means of an enteroscope is difficult, even using current devices such as single-balloon or double-balloon enteroscopes. Exploration time and patient discomfort are the main drawbacks. The prototype 'Endoworm' analysed in this paper is based on a pneumatic...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] Access to the small bowel by means of an enteroscope is difficult, even using current devices such as single-balloon or double-balloon enteroscopes. Exploration time and patient discomfort are the main drawbacks. The prototype 'Endoworm' analysed in this paper is based on a pneumatic translation system that, gripping the bowel, enables the endoscope to move forward while the bowel slides back over its most proximal part. The grip capacity is related to the pressure inside the balloon, which depends on the insufflate volume of air. Different materials were used as in vitro and ex vivo models: rigid polymethyl methacrylate, flexible silicone, polyester urethane and ex vivo pig small bowel. On measuring the pressure-volume relationship, we found that it depended on the elastic properties of the lumen and that the frictional force depended on the air pressure inside the balloons and the lumen's elastic properties. In the presence of a lubricant, the grip on the simulated intestinal lumens was drastically reduced, as was the influence of the lumen's properties. This paper focuses on the Endoworm's ability to grip the bowel, which is crucial to achieving effective endoscope forward advance and bowel folding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was funded by the Spanish Ministry of Economy and Competitiveness through Project (PI18/01365) and by the UPV/IIS LA Fe through the (Endoworm 3.0) Project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund
Tobella, J.; Pons-Beltrán, V.; Santonja, A.; Sánchez-Diaz, C.; Campillo Fernandez, AJ.; Vidaurre, A. (2020). Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine. 234(5):1-10. https://doi.org/10.1177/0954411920901414
Iddan, G., Meron, G., Glukhovsky, A., & Swain, P. (2000). Wireless capsule endoscopy. Nature, 405(6785), 417-417. doi:10.1038/35013140
Yamamoto, H., Sekine, Y., Sato, Y., Higashizawa, T., Miyata, T., Iino, S., … Sugano, K. (2001). Total enteroscopy with a nonsurgical steerable double-balloon method. Gastrointestinal Endoscopy, 53(2), 216-220. doi:10.1067/mge.2001.11218 |
---|