Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

This article has been accepted for publication in Virus Evolution published by Oxford University Press. [EN] Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: González, Rubén, Butkovic, Anamarija, ELENA FITO, SANTIAGO FCO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article has been accepted for publication in Virus Evolution published by Oxford University Press. [EN] Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen. We thank Francisca de la Iglesia for continuous excellent technical support. Work was supported by Spain's Agencia Estatal de Investigacion-FEDER grant BFU2015-65037-P and Generalitat Valenciana grant GRISOLIA/2018/005 to S.F.E. R.G. was supported by Spain's Agencia Estatal de Investigacion pre-doctoral contract BES-2016-077078. González, R.; Butkovic, A.; Elena Fito, SF. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evolution. 5(2):1-12. https://doi.org/10.1093/ve/vez024 Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9