A 2 '-O-Methyltransferase Responsible for Transfer RNA Anticodon Modification Is Pivotal for Resistance to Pseudomonas syringae DC3000 in Arabidopsis
[EN] Transfer RNA (tRNA) is the most highly modified class of RNA species in all living organisms. Recent discoveries have revealed unprecedented complexity in the tRNA chemical structures, modification patterns, regulation, and function, suggesting that each modified nucleoside in tRNA may have its...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [EN] Transfer RNA (tRNA) is the most highly modified class of RNA species in all living organisms. Recent discoveries have revealed unprecedented complexity in the tRNA chemical structures, modification patterns, regulation, and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge of the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2'-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance susceptibility during infection with the virulent bacterial pathogen Pseudomonas syringae DC3000. Lack of such tRNA modification, as observed in scs9 mutants, specifically dampens plant resistance against DC3000 without compromising the activation of the salicylic acid signaling pathway or the resistance to other biotrophic pathogens. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective disease resistance in Arabidopsis toward DC3000 and, therefore, expands the repertoire of molecular components essential for an efficient disease resistance response.
Funding for this work were supported by Generalitat Valenciana, grant Prometeo2014/024 and MINECO, grant BFU2015-68199-R.
Ramírez, V.; González, B.; López, A.; Castelló Llopis, MJ.; Gil, M.; Zheng, B.; Cheng, P... (2018). A 2 '-O-Methyltransferase Responsible for Transfer RNA Anticodon Modification Is Pivotal for Resistance to Pseudomonas syringae DC3000 in Arabidopsis. Molecular Plant-Microbe Interactions. 31(12):1323-1336. https://doi.org/10.1094/MPMI-06-18-0148-R |
---|