Towards the fluorogenic detection of peroxide explosives through host-guest chemistry

[EN] Two dansyl-modified beta-cyclodextrin derivatives (1 and 2) have been synthesized as host-guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Almenar, Estefanía, Costero, Ana M, Gaviña, Pablo, Gil Grau, Salvador, Parra Álvarez, Margarita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] Two dansyl-modified beta-cyclodextrin derivatives (1 and 2) have been synthesized as host-guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP. We thank the Spanish Government (MAT2015-64139-C4-4-R) and Generalitat Valenciana (PROMETEOII/2014/047) for financial support. Almenar, E.; Costero, AM.; Gaviña, P.; Gil Grau, S.; Parra Álvarez, M. (2018). Towards the fluorogenic detection of peroxide explosives through host-guest chemistry. Royal Society Open Science. 5(4). https://doi.org/10.1098/rsos.171787 Dubnikova, F., Kosloff, R., Almog, J., Zeiri, Y., Boese, R., Itzhaky, H., … Keinan, E. (2005). Decomposition of Triacetone Triperoxide Is an Entropic Explosion. Journal of the American Chemical Society, 127(4), 1146-1159. doi:10.1021/ja0464903 Fitzgerald, M., & Bilusich, D. (2011). Sulfuric, Hydrochloric, and Nitric Acid-Catalyzed Triacetone Triperoxide (TATP) Reaction Mixtures: An Aging Study. Journal of Forensic Sciences, 56(5), 1143-1149. doi:10.1111/j.1556-4029.2011.01806.x Matyáš, R., Pachman, J., & Ang, H.-G. (2009). Study of TATP: Spontaneous Transformation of TATP to DADP - Full Paper. Propellants, Explosives, Pyrotechnics, 34(6), 484-488. doi:10.1002/prep.200800043 Matyas, R., Pachman, J., & Ang, H.-G. (2008). Study of TATP: Spontaneous Transformation of TATP to DADP. Propellants, Explosives, Pyrotechnics, 33(2), 89-91. doi:10.1002/prep.200700247 Wang, J. (2007). Electrochemical Sensing of Explosives. Electroanalysis, 19(4), 415-423. doi:10.1002/elan.200603748 Bauer, C., Willer, U., Lewicki, R., Pohlkötter, A., Kosterev, A., Kosynkin, D., … Schade, W. (2009). A Mid-infrared QEPAS sensor device for TATP detection. Journal of Physics: Conference Series, 157, 012002. doi:10.1088/1742-6596/157/1/012002 Widmer, L., Watson, S., Schlatter, K., & Crowson, A. (2002). Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP). The Analyst, 127(12), 1627-1632. doi:10.1039/b208350g Zhang, Y., Ma, X., Zhang, S., Yang, C., Ouyang, Z., & Zhang, X. (2009). Direct detection of explosives on solid surfaces by low temperature plasma desorpti