Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4

[EN] We present an experimental study and a theoretical interpretation of the temperature dependence of the transport properties of doped CsH2PO4 salts in both protonic and superprotonic phases. Cesium phosphate based solid electrolytes are technologically relevant because their operational temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Andrio Balado, Andreu, Hernández, S. I, García-Alcantara, C, Del Castillo, L. F, Compañ Moreno, Vicente, Santamaría-Holek, Ivàn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] We present an experimental study and a theoretical interpretation of the temperature dependence of the transport properties of doped CsH2PO4 salts in both protonic and superprotonic phases. Cesium phosphate based solid electrolytes are technologically relevant because their operational temperature range is about 100 to 300 degrees C in which a superprotonic transition may manifest depending on its mixed composition. The experimental study was carried out using impedance spectroscopy at the temperature range of 150-230 degrees C, and the protonic and superprotonic transport properties and proton concentrations were calculated and analyzed by using the electrode polarization, and the Debye and Cole-Cole models for the dielectric constant. We have shown that the transport properties predicted by the Cole-Cole model are consistent with the conductivity measurements whereas the Debye model shows some inconsistencies. We attribute this to the fact that the Cole-Cole model incorporates the effects of interactions among charge carriers better than the more commonly used Debye model. In this way, our work shows a more consistent approach to determine the transport properties of solid electrolytes and, therefore, provides a more reliable tool to analyze the transport properties of heterogeneous solid electrolytes that can be used in electrochemical devices, including fuel cells and supercapacitors. This research was supported by Ministerio de Economia y Competitividad (MINECO) by means of the project reference: ENE/2015-69203-R. ISH, CGA and SIH are grateful to projects UNAM-DGAPA-PAPIIT-IN116617, IN117419 and IA104319. SIH is grateful to project LANCAD-UNAM-DGTIC-276. LFC is grateful to projects DGAPA-PAPIIT IG-100618 and DGAPA-PAPIIT IN114818. We gratefully acknowledge Profs Dr Francesc Teixidor and Dr Clara Vinas for technical assistance in SEM image and EDX analysis and preparation of samples for such studies. Andrio Balado, A.; Hernández, SI.; García-Alcantara, C.; Del Castillo, LF.; Compañ Moreno, V.; Santamaría-Holek, I. (2019). Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Physical Chemistry Chemical Physics. 21(24):12948-12960. https://doi.org/10.1039/c8cp07472k Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Nafion® in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(5), 1498-1504. doi:10.1149/1.1836669 Ishihara, T. (2002). Mixe