MATLAB GUI for computing Bessel functions using continued fractions algorithm

[EN] Higher order Bessel functions are prevalent in physics and engineering and there exist different methods to evaluate them quickly and efficiently. Two of these methods are Miller's algorithm and the continued fractions algorithm. Miller's algorithm uses arbitrary starting values and n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hernandez Vargas, E, Commeford, K, Pérez Quiles, María Jezabel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[EN] Higher order Bessel functions are prevalent in physics and engineering and there exist different methods to evaluate them quickly and efficiently. Two of these methods are Miller's algorithm and the continued fractions algorithm. Miller's algorithm uses arbitrary starting values and normalization constants to evaluate Bessel functions. The continued fractions algorithm directly computes each value, keeping the error as small as possible. Both methods respect the stability of the Bessel function recurrence relations. Here we outline both methods and explain why the continued fractions algorithm is more efficient. The goal of this paper is both (1) to introduce the continued fractions algorithm to physics and engineering students and (2) to present a MATLAB GUI (Graphic User Interface) where this method has been used for computing the Semi-integer Bessel Functions and their zeros. [PT] Funções de Bessel de ordem mais alta são recorrentes em física e nas engenharias, sendo que há diferentes métodos para calculá-las de maneira rápida e eficiente. Dois destes métodos são o algoritmo de Miller e o algoritmo de frações continuadas. O primeiro faz uso de valores iniciais e constantes de normalização arbitrários, enquanto o segundo o faz calculando cada valor diretamente, minimizando tanto quanto possível o erro. Ambos respeitam a estabilidade das relações de recorrência das funções de Bessel. Neste trabalho descrevemos ambos os métodos e explicamos a razão pela qual o algoritmo das frações continuadas é mais eficiente. O objetivo do artigo é (1) introduzir o algoritmo de frações continuadas para estudantes de física e das engenharias e (2) apresentar um GUI (Graphic User Interface) em Matlab no qual este método foi utilizado para calcular funções de Bessel semi-inteiras e seus zeros. The authors wish to thank the financial support received from the Universidad Politécnica de Valencia under grant PAID-06-09-2734, from the Ministerio de Ciencia e Innovación through grant ENE2008-00599 and specially from the Generalitat Valenciana under grant reference 3012/2009. Hernandez Vargas, E.; Commeford, K.; Pérez Quiles, MJ. (2011). MATLAB GUI for computing Bessel functions using continued fractions algorithm. Revista Brasileira de Ensino de Física. 33(1):1303-1311. https://doi.org/10.1590/S1806-11172011000100003 Giladi, E. (2007). Asymptotically derived boundary elements for the Helmholtz equation in high frequencies. Journal of Computational and Applied Mathematics, 1