Initial Delay Domain UWB Channel Characterization for In-body Area Networks

Wireless Body Area Networks (WBANs) have increased the attention of the research community for the next generation wireless medical devices. Among others, Wireless Capsule Endoscopy (WCE) aims to transmit better quality images. For this, the Ultra Wideband (UWB) frequency band is becoming a good alt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pérez-Simbor, Sofia, Garcia-Pardo, Concepcion, Cardona Marcet, Narciso
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless Body Area Networks (WBANs) have increased the attention of the research community for the next generation wireless medical devices. Among others, Wireless Capsule Endoscopy (WCE) aims to transmit better quality images. For this, the Ultra Wideband (UWB) frequency band is becoming a good alternative to currently allocated frequencies for in-body networks, allowing higher data rate and having a low power transmission. Common channel characterization in WBANs are performed in frequency domain, i.e., analyzing the received power as a function of frequency. Nevertheless, indepth studies in delay domain analyzing the impulse response of the channel are barely considered in current literature. In this paper, an initial study in delay domain, i.e., the Power Delay Profile (PDP) characteristics, is performed. Moreover, a comparison between the channel response in frequency and delay domain is performed. This work gives an insightful view of the impulse response of the channel for in-body to on-body communications. For that, an extensive campaign of phantom measurements and software simulations are conducted. This work was supported by the European Union’s H2020:MSCA:ITN program for the ”Wireless In-body Environment Communication- WiBEC” project under the grant agreement no. 675353. This work was also funded by by the European Union’s H2020: MSCA: ITN program for the ”mmWave Communications in the Built Environments - WaveComBE” project under the grant agreement no. 766231. Pérez-Simbor, S.; Garcia-Pardo, C.; Cardona Marcet, N. (2019). Initial Delay Domain UWB Channel Characterization for In-body Area Networks. IEEE. 1-5. https://doi.org/10.1109/ISMICT.2019.8743767