The utility of fitness landscapes and big data for predicting evolution
De Visser, J.; Elena Fito, SF.; Fragata, I.; Matuszewski, S. (2018). The utility of fitness landscapes and big data for predicting evolution. Heredity. 121(5):401-405. https://doi.org/10.1038/s41437-018-0128-4 Acevedo A, Brosdsky L, Andino R (2014) Mutational and fitness landscapes of an RNA virus r...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | De Visser, J.; Elena Fito, SF.; Fragata, I.; Matuszewski, S. (2018). The utility of fitness landscapes and big data for predicting evolution. Heredity. 121(5):401-405. https://doi.org/10.1038/s41437-018-0128-4
Acevedo A, Brosdsky L, Andino R (2014) Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505:686–690
Bank C, Matuszewski, Hietpas RT, Jensen JD (2016) On the (un)predictability of a large intragenic fitness landscape. Proc Natl Acad Sci USA 113:14085–14090
Blanquart F, Achaz G, Bataillon T, Tenaillon O (2014) Properties of selected mutations and genotypic landscapes under Fisher’s geometric model. Evolution 68:3537–3554
Blanquart F, Bataillon T (2016) Epistasis and the structure of fitness landscapes: Are experimental fitness landscapes compatible with Fisher’s geometric model? Genetics 203:847–862
Catalán P, Arias CF, Cuesta JA, Manrubia SC (2017) Adaptive multiscapes: an up-to-date metaphor to visualize molecular adaptation. Biol Direct 12:7
Cervera H, Lalić J, Elena SF (2016a) Effect of host species on topography of the fitness landscape for a plant RNA virus. J Virol 90:10160–10169
Cervera H, Lalić J, Elena SF (2016b) Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc R Soc B 283:20160984
Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841
de Visser JAGM, Krug J (2014) Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 15:480–490
de Vos MGJ, Dawid A, Sunderlikova V, Tans SJ (2015) Breaking evolutionary constraint with a tradeoff ratchet. Proc Natl Acad Sci USA 112:14906–14911
Draghi JA, Plotkin JB (2013) Selection biases the prevalence and type of epistasis along adaptive trajectories. Evolution 67:3120–3131
Ferretti L, Schmiegelt B, Weinreich DM, Yamauchi A, Kobayashi Y, Tajima F, Achaz G (2016) Measuring epistasis in fitness landscapes: the correlation of fitness effects of mutations. J Theor Biol 396:132–143
Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford
Flynn KM, Cooper TF, Moore FBG, Cooper VS (2013) The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genet 9:e1003426
Gorter FA, Aarts MGM, Zwaan BJ, de Visser JAGM (2018) Local fitness landscapes predict yeast evolutionary dynamics |
---|