HPC algorithms for nonnegative decompositions
Muchos problemas procedentes de aplicaciones del mundo real pueden ser modelados como problemas matemáticos con magnitudes no negativas, y por tanto, las soluciones de estos problemas matemáticos solo tienen sentido si son no negativas. Estas magnitudes no negativas pueden ser, por ejemplo, las frec...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Muchos problemas procedentes de aplicaciones del mundo real pueden ser modelados como problemas matemáticos con magnitudes no negativas, y por tanto, las soluciones de estos problemas matemáticos solo tienen sentido si son no negativas. Estas magnitudes no negativas pueden ser, por ejemplo, las frecuencias en una señal sonora, las intensidades de los pixeles de una imagen, etc.
Algunos de estos problemas pueden ser modelados utilizando un sistema de ecuaciones lineales sobredeterminado. Cuando la solución de dicho problema debe ser restringida a valores no negativos, aparece un problema llamado problema de mínimos cuadrados no negativos (NNLS por sus siglas en inglés). La solución de dicho problema tiene múltiples aplicaciones en ciencia e ingeniería.
Otra descomposición no negativa importante es la Factorización de Matrices No negativas (NMF por sus siglas en inglés). La NMF es una herramienta muy popular utilizada en varios campos, como por ejemplo: clasificación de documentos, aprendizaje automático, análisis de imagen o separación de señales sonoras. Esta factorización intenta aproximar una matriz no negativa con el producto de dos matrices no negativas de menor tamaño, creando habitualmente representaciones por partes de los datos originales.
Los algoritmos diseñados para calcular la solución de estos dos problemas no negativos tienen un elevado coste computacional, y debido a ese elevado coste, estas descomposiciones pueden beneficiarse mucho del uso de técnicas de Computación de Altas Prestaciones (HPC por sus siglas en inglés). Estos sistemas computacionales de altas prestaciones incluyen desde los modernos computadores multinucleo a lo último en aceleradores de calculo (Unidades de Procesamiento Gráfico (GPU), Intel Many Integrated Core (MIC), etc.). Para obtener el máximo rendimiento de estos sistemas, los desarrolladores deben utilizar tecnologías software tales como la programación paralela, la vectoración o el uso de librerías de computación altas prestaciones.
A pesar de que existen diversos algoritmos para calcular la NMF y resolver el problema NNLS, no todos ellos disponen de una implementación paralela y eficiente. Además, es muy interesante reunir diversos algoritmos con propiedades diferentes en una sola librería computacional. Esta tesis presenta una librería computacional de altas prestaciones que contiene implementaciones paralelas y eficientes de los mejores algoritmos existentes actualmente para calcular la NMF. Además la tesis tamb |
---|